

Django Rest Easy

Introduction

Django-rest-easy is an extension to Django Rest Framework providing QOL improvements to serializers and views that introduce a more
coherent workflow for creating REST APIs:

	Versioning and referencing serializers by model and schema, along with autoimport, so your serializers will be available anywhere,
as long as you know the model and schema.

	A rest_easy.fields.StaticField for adding static data (independent of instance) to serializers.

	Creating views and viewsets using model and schema (it will automatically obtain serializer and queryset, although you can override
both with usual DRF class-level parameters).

	A serializer override for a particular DRF verb, like create or update: no manual get_serialize_class override, no splitting ViewSets
into multiple views.

	Scoping views’ querysets and viewsets by url kwargs or request object parameters. Fore example, when you want to limit messages to
a particular thread or threads to currently logged in user.

	Adding your own base classes to GenericView and your own mixins to all resulting generic view classes, like ListCreateAPIView.

	Chaining views’ perform_update and perform_create: they by default pass **kwargs to serializer.save() now.

	A helper mixin that enables serializing Django model instances with just an instance method call.

	A helper methods that find serializer class and deserialize a blob of data, since oftentimes you will not know what exact data you will
receive in a particular endpoint, especially when dealing with complex integrations.

All of the above are possible in pure DRF, but usually introduce a lot of boilerplate or aren’t very easy or straightforward to code
Therefore, at Telmediq we decided to open source the package that helps make our API code cleaner and more concise.

Installation

Django-rest-easy is available on PyPI. The simplest way to install it is by running pip install django-rest-easy. Afterwards you need
to add rest_easy to Django’s INSTALLED_APPS:

INSTALLED_APPS = (
 # ...
 'rest_framework',
 'rest_easy',
 # ...
)

To make your serializers registered and working well with django-rest-easy’s views, make sure they are autoimported. You can do that
either by importing them in app.serializers module or modifying REST_EASY_AUTOIMPORT_SERIALIZERS_FROM setting to include your
serializer location. For example, if you place your serializers in app.api.serializers, you should add the following to your settings
file:

REST_EASY_AUTOIMPORT_SERIALIZERS_FROM = ['api.serializers']

Also, change your serializers to inherit from rest_easy.serializers.Serializer or rest_easy.serializers.ModelSerializer
instead of default DRF serializers. Same goes for views - you should be using this:

from rest_easy.views import *

Instead of

from rest_framework.generics import *

Additionally, the following settings can alter the behaviour of the package:

	REST_EASY_AUTOIMPORT_SERIALIZERS_FROM - specify modules or packages that rest-easy will try to import serializers
from when AppConfig is ready. The import is app-based, so it will search for serializers in all installed apps.
By default [‘serializers’]

	REST_EASY_VIEW_BASES - the mixins that should go into all views near the end of the mro (method resolution order). They
will be placed before all DRF and django-rest-easy’s bases, and after all generic mixins from DRF.

	REST_EASY_GENERIC_VIEW_MIXINS - the mixins that should go into all generic views at the beginning of the mro
(that means CreateAPIView, ListAPIView, RetrieveAPIView, DestroyAPIView, UpdateAPIView, ListCreateAPIView,
RetrieveUpdateAPIView, RetrieveDestroyAPIView, RetrieveUpdateDestroyAPIView, ReadOnlyModelViewSet,
ModelViewSet).

	REST_EASY_SERIALIZER_CONFLICT_POLICY - either ‘allow’ or ‘raise’. What should happen when you redeclare a serializer
with same model and schema - either the new one will be used or an error will be raised. By default ‘allow’ to not
break applications with weird imports.

Because you usually won’t be able to import the bases directly in settings, they should be given using class location strings (as is
often the case in Django):

REST_EASY_VIEW_BASES = ['myapp.mixins.GlobalBase']
REST_EASY_GENERIC_VIEW_MIXINS = ['myapp.mixins.SuperMixin', 'myotherapp.mixins.WhatIsItMixin']

They will be prepended to base class lists preserving their order. Please make sure that you are not importing django-rest-easy views
before the mixins are ready to import (so before AppConfig.ready is called, for good measure).

Basic usage

A minimal example to showcase what you can do would be:

from django.conf.urls import include, url
from rest_framework.routers import DefaultRouter

from rest_easy.serializers import ModelSerializer
from rest_easy.views import ModelViewSet
from rest_easy.scopes import UrlKwargScopeQuerySet
from rest_easy.tests.models import Account, User

class UserSerializer(ModelSerializer):
 class Meta:
 model = User
 schema = 'default'
 fields = '__all__'

class UserViewSet(ModelViewSet):
 model = User
 schema = 'default'
 lookup_url_kwarg = 'pk'
 scope = UrlKwargScopeQuerySet(Account)

router = DefaultRouter()
router.register(r'accounts/(?P<account_pk>\d+)/users', UserViewSet)

urlpatterns = [url(r'^', include(router.urls))]

Detailed usage

Serializers

Django-rest-easy serializer bases (rest_easy.serializers.Serializer and rest_easy.serializers.ModelSerializer) are
registered on creation and provide some consistency constraints: each serializer needs to have model and schema set in its Meta. Schema
needs to be a string, while model should be a Django model subclass or explicit None. Both of those properties are required to be able
to register the serializer properly. Both are also appended to serializer’s fields as rest_easy.fields.StaticField. They will
be auto-included in Meta.fields when necessary (ie. fields is not __all__):

class UserSerializer(ModelSerializer):
 class Meta:
 model = User
 schema = 'default'
 fields = '__all__'

Serializers can be obtained easily from rest_easy.registers.SerializerRegister (or, already instantiated,
rest_easy.registers.serializer_register) like so:

from rest_easy.registers import serializer_register

serializer = serializer_register.get('myapp.mymodel', 'default-schema')
or
from myapp.models import MyModel
serializer = serializer_register.get(MyModel, 'default-schema')
or
serializer = serializer_register.get(None, 'modelless-schema')

This feature is leveraged heavily by django-rest-easy’s views. Please remember that serializers need to be imported in order to be
registered - it’s best achieved by using the auto-import functionality described in the installation section.

As for the rest_easy.fields.StaticField, it can be used as such:

class UserSerializer(ModelSerializer):
 class Meta:
 model = User
 schema = 'default'
 fields = '__all__'
 static_data = StaticField(value='static_value')

Views

Views and viewsets provide a few additional features, allowing you to not specify queryset and serializer_class properties by
default. If they are specified, though, they take priority over any logic provided by django-rest-easy.

	Providing serializer_class will disable per-verb custom serializers. It will make the view act basically as regular DRF view.

	queryset property doesn’t disable any functionality. By default it is set to model.objects.all(), where model is provided as a
class property, but it can be overridden at will without messing with django-rest-easy’s functionality.

Overall using serializer_class on django-rest-easy views is not recommended.

A view example showing available features:

class UserViewSet(ModelViewSet):
 model = User
 schema = 'default'
 serializer_schema_for_verb = {'update': 'schema-mutate', 'create': 'schema-mutate'}
 lookup_url_kwarg = 'pk'
 scope = UrlKwargScopeQuerySet(Account)

 def perform_update(self, serializer, **kwargs):
 kwargs['account'] = self.get_account()
 return super(UserViewSet, self).perform_update(serializer, **kwargs)

 def perform_create(self, serializer, **kwargs):
 kwargs['account'] = self.get_account()
 return super(UserViewSet, self).perform_create(serializer, **kwargs)

We’re setting User as model, so the inferred queryest will be User.objects.all(). When a request comes in, a proper serializer will
be selected:

	If the DRF dispatcher will call update or create methods, we will use serializer obtained by calling
serializer_register.get(User, ‘schema-mutate’).

	Otherwise the default schema will be used, so serializer_register.get(User, ‘default’).

Additionally we’re scoping the Users by account. In short, that means (by default - more on that in the section below) that our base
queryset is modified with:

queryset = queryset.filter(account=Account.objects.get(pk=self.kwargs.get('account_pk')))

Also, helper methods are provided for each scope that doesn’t disable it:

def get_account(self):
 return Account.objects.get(pk=self.kwargs.get('account_pk'))

Technically, they are implemented with __getattr__, but each scope which doesn’t have get_object_handle set to None
will provide a get_X method (like get_account above) to obtain the object used for filtering. The object is kept cached
on the view instance, so it can be reused during request handling without additional database queries. If the get_X method
would be shadowed by something else, all scoped object are available via view.get_scoped_object:

def perform_create(self, serializer, **kwargs):
 kwargs['account'] = self.get_scoped_object('account')
 return super(UserViewSet, self).perform_create(serializer, **kwargs)

This follows standard Django convention of naming foreign keys by RelatedModel._meta.model_name (same as scoped object access
on view), using pk as primary key and modelname_pk as url kwarg. All of those parameters are configurable (see Scopes section below).

For more complex cases, you can provide a list of scopes instead of a single scope. All of them will be applied to the queryset.

Now let’s say all your models need to remember who modified them recently. You don’t really want to pass the logged in user to
serializer in each view, and using threadlocals or globals isn’t a good idea for this type of task. The solution to this problem
would be a common view mixin. Let’s say we place this in myapp.mixins.py:

class InjectUserMixin(object):
 def perform_update(self, serializer, **kwargs):
 kwargs['user'] = self.request.user
 return super(UserViewSet, self).perform_update(serializer, **kwargs)

 def perform_create(self, serializer, **kwargs):
 kwargs['user'] = self.request.user
 return super(UserViewSet, self).perform_create(serializer, **kwargs)

And set REST_EASY_GENERIC_VIEW_MIXINS in your Django settings to:

REST_EASY_GENERIC_VIEW_MIXINS = ['myapp.mixins.InjectUserMixin']

Now all serializers will receive user as a parameter when calling save() from a update or create view.

Scopes

Scopes are used to apply additional filters to views’ querysets based on data obtainable form kwargs
(rest_easy.scopes.UrlKwargScopeQuerySet) and request (rest_easy.scopes.RequestAttrScopeQuerySet). They should be used
remove the boilerplate and bloat coming from filtering inside get_queryset or in dedicated mixins by providing a configurable wrapper
for the filtering logic.

There is also a base rest_easy.scopes.ScopeQuerySet that you can inherit from to provide your own logic. When called, the
ScopeQuerySet instance receives whole view object as a parameter, so it has access to everything that happens during the request as well
as in application as a whole.

Scopes can be chained (that is you can filter scope’s queryset using another scope, just as it was a view; this supports lists of scopes
as well). An example would be:

class MessageViewSet(ModelViewSet):
 model = Message
 schema = 'default'
 lookup_url_kwarg = 'pk'
 scope = UrlKwargScopeQuerySet(Thread, parent=UrlKwargScopeQuerySet(Account))

ScopeQuerySet

When instantiating it, it accepts the following parameters ({value} is the filtering value obtained by concrete Scope implementation):

	qs_or_obj: a queryset or model (in that case, the queryset would be model.objects.all()) that the scope works on. This can also
be None in special cases (for example, when using rest_easy.scopes.RequestAttrScopeQuerySet with is_object=True).
For example, assuming you have a model Message that has foreign key to Thread, when scoping a MessageViewSet you would use
scope = ScopeQuerySet(Thread).

	parent_field: the field qs_or_obj should be filtered by. By default it is pk. Following the example, the scope above would find the
Thread object by Thread.objects.all().filter(pk={value}).

	raise_404: If the instance we’re scoping by isn’t found (in the example, Thread with pk={value}), whether a 404 exception should be
raised or should we continue as usual. By default False

	allow_none: If the instance we’re scoping by isn’t found and 404 is not raised, whether to allow filtering child queryset with None
(allow_none=True) or not - in this case we will filter with model.objects.none() and guarantee no results (allow_none=False).
False by default.

	get_object_handle: the name under which the object used for filtering (either None or result of applying {value} filter to queryset)
will be available on the view. By default this is inferred to model_name. Can be set to None to disable access. It can be accessed
from view as view.get_{get_object_handle}, so when using the above example, view.get_thread(). If the get_x method would be
shadowed by something else, there is an option to call view.get_scoped_object(get_object_handle), so for example
view.get_scoped_object(thread).

	parent: parent scope. If present, qs_or_obj will be filtered by the scope or scopes passed as this parameter, just as if this was a
view.

UrlKwargScopeQuerySet

It obtains filtering value from view.kwargs. It takes one additional keyword argument:

	url_kwarg: what is the name of kwarg (as given in url config) which has the value to filter by. By default it is configured to be
model_name_pk (model name is obtained from qs_or_obj).

Example:

scope = UrlKwargScopeQuerySet(Message.objects.active(), parent_field='uuid', url_kwarg='message_uuid', raise_404=True)
queryset = scope.child_queryset(queryset, view)
is equal to roughly:
queryset = queryset.filter(message=Message.objects.active().get(uuid=view.kwargs.get('message_uuid'))

RequestAttrScopeQuerySet

It obtains the filtering value from view.request. It takes two additional keyword arguments:

	request_attr: the attribute in view.request that contains the filtering value or the object itself.

	is_object: whether the request attribute contains object (True) or filtering value (False). By default True.

Example with is_object=True:

scope = RequestAttrScopeQuerySet(User, request_attr='user')
queryset = scope.child_queryset(queryset, view)
is roughly equal to:
queryset = queryset.filter(user=view.request.user)

Example with is_object=False:

scope = RequestAttrScopeQuerySet(User, request_attr='user', is_object=False)
queryset = scope.child_queryset(queryset, view)
is roughly equal to:
queryset = queryset.filter(user=User.objects.get(pk=view.request.user))

Helpers

There are following helpers available in rest_easy.models:

	rest_easy.models.SerializableMixin - it’s supposed to be used on models. It provides
rest_easy.models.SerializableMixin.get_serializer() method for obtaining model serializer given a schema and
rest_easy.models.SerializableMixin.serialize() to serialize data (given schema or None, in which case the default schema is
used. It can be set on a model, initially it’s just ‘default’).

	rest_easy.models.get_serializer() - looking at a blob of data, it obtains the serializer from register based on data[‘model’]
and data[‘schema’].

	rest_easy.models.deserialize_data() - deserializes a blob of data if appropriate serializer is found.

API docs

Django-rest-easy provides base classes for API views and serializers.

To leverage the QOL features of django-rest-easy, you should use the followint base classes for your serializers:

	rest_easy.serializers.Serializer

	rest_easy.serializers.ModelSerializer

And if it’s model-based, it should use one of the base views provided in the rest_easy.views
module - preferably rest_easy.views.ModelViewSet or rest_easy.views.ReadOnlyModelViewSet.

As a baseline, all responses using django-rest-easy extension will contain top-level model and schema fields.

Guidelines regarding schemas are as usual: they have to be 100% backwards compatible. In the case of breaking changes,
a serializer with new schema should be created, and the old one slowly faded away - and removed only when no
applications use it - or when it’s decided that the feature can’t be supported anymore.

An alternative to multi-version fadeout is single-version fadeout, where the change is implemented as a set of
acceptable changes (that is, you can remove the old field only when all clients stop using it - even if it means
sending duplicate data for quite some time).

The classes from this module don’t disable any behaviour inherent to Django Rest Framework - anything that is possible
there will be possible with the django-rest-easy base classes.

Django Rest Easy uses following settings:

	REST_EASY_AUTOIMPORT_SERIALIZERS_FROM - for autoimporting serializers.

	REST_EASY_VIEW_BASES - for prepending bases to all views declared in django-rest-easy. They will end up before
all base views, either DRF’s or django-rest-easy’s, but after generic mixins in the final generic view mro.
So in rest_easy.views.GenericAPIView and rest_easy.views.GenericAPIViewSet they will be at the
very beginning of the mro, but everything declared in generic mixins, like DRF’s CreateMixin, will override that.

	REST_EASY_GENERIC_VIEW_MIXINS - for prepending bases to generic views. They will end up at the beginning of mro
of all generic views available in django-rest-easy. This can be used to make views add parameters when doing
perform_update() or perform_create().

	REST_EASY_SERIALIZER_CONFLICT_POLICY - what happens when serializer with same model and schema is redefined. Defaults
to ‘allow’, can also be ‘raise’ - in the former case the new serializer will replace the old one. Allow is used
to make sure that any import craziness is not creating issues by default.

	
class rest_easy.ApiConfig(app_name, app_module)

	Bases: django.apps.config.AppConfig

AppConfig autoimporting serializers.

It scans all installed applications for modules specified in settings.REST_EASY_AUTOIMPORT_SERIALIZERS_FROM
parameter, trying to import them so that all residing serializers using
rest_easy.serializers.SerializerCreator metaclass will be added to
rest_easy.registers.SerializerRegister.

In the case of a module not being present in app’s context, the import is skipped.
In the case of a module existing but failing to import, an exception will be raised.

	
autodiscover()

	Auto-discover serializers in installed apps, fail silently when not present, re-raise exception when present
and import fails. Borrowed form django.contrib.admin with added nested presence check.

	
default_paths = ['serializers', 'api.serializers']

	

	
label = 'rest_easy'

	

	
name = 'rest_easy'

	

	
paths

	Get import paths - from settings or defaults.

	
ready()

	Override this method in subclasses to run code when Django starts.

Exceptions

This module contains exceptions native to django-rest-easy.

	
exception rest_easy.exceptions.RestEasyException

	Bases: exceptions.Exception

Default django-rest-easy exception class.

Fields

This module contains fields necessary for the django-rest-easy module.

	
class rest_easy.fields.StaticField(value, **kwargs)

	Bases: rest_framework.fields.Field

A field that always provides the same value as output.

The output value is set on initialization, ie:

from rest_easy.serializers import Serializer

class MySerializer(Serializer):
 static = StaticField('This will always be the value.')

	
to_representation(value)

	Return the static value.

Models

This module provides useful model mixins and global functions.

Its contents can be used to serialize a model or find proper serializer/deserialize data via a registered serializer.

	
class rest_easy.models.SerializableMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This mixin provides serializing functionality to Django models.

The serializing is achieved thanks to serializers registered in
rest_easy.registers.SerializerRegister. A proper serializer based on model and provided
schema is obtained from the register and the serialization process is delegated to it.

Usage:

`python
from users.models import User
serializer = User.get_serializer(User.default_schema)
`
Or:

`python
data = User.objects.all()[0].serialize()
`

	
default_schema = u'default'

	

	
classmethod get_serializer(schema)

	Get correct serializer for this model and given schema,

Utilizes rest_easy.registers.SerializerRegister to obtain correct serializer class.
:param schema: schema to be used for serialization.
:return: serializer class.

	
serialize(schema=None)

	Serialize the model using given or default schema.
:param schema: schema to be used for serialization or self.default_schema
:return: serialized data (a dict).

	
rest_easy.models.get_serializer(data)

	Get correct serializer for dict-like data.

This introspects model and schema fields of the data and passes them to
rest_easy.registers.SerializerRegister.
:param data: dict-like object.
:return: serializer class.

	
rest_easy.models.deserialize_data(data)

	Deserialize dict-like data.

This function will obtain correct serializer from rest_easy.registers.SerializerRegister
using rest_easy.models.get_serializer().
:param data: dict-like object or json string.
:return: Deserialized, validated data.

Patterns

This class defines generic bases for a few design / architectural patterns
required by django-rest-easy, namely singleton and register.

	
class rest_easy.patterns.SingletonCreator

	Bases: type [https://docs.python.org/3/library/functions.html#type]

This metaclass wraps __init__ method of created class with singleton_decorator.
This ensures that it’s impossible to mess up the instance for example by
calling __init__ with getattr.

	
static singleton_decorator(func)

	We embed given function into checking if the first (zeroth) parameter of its call
shall be initialised.
:param func: instantiating function (usually __init__).
:returns: embedded function function.

	
class rest_easy.patterns.SingletonBase

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This class implements the singleton pattern using a metaclass and
overriding default __new__ magic method’s behaviour. It works together with
SingletonCreator metaclass to create a Singleton base class.
sl_init property is reserved, you can’t use it in inheriting classes.

	
class rest_easy.patterns.Singleton

	Bases: rest_easy.patterns.SingletonBase

This is a Singleton you can inherit from.
It reserves sl_init instance attribute to work properly.

	
class rest_easy.patterns.BaseRegister(**kwargs)

	Bases: rest_easy.patterns.Singleton

This class is a base register-type class. You should inherit from it to create particular registers.

conflict_policy is a setting deciding what to do in case of name collision (registering another
entity with the same name). It should be one of:

	allow - replace old entry with new entry, return True,

	deny - leave old entry, return False,

	raise - raise RestEasyException.

Default policy is raise.

As this is a singleton, instantiating a particular children class in any place will yield the exact same data
as the register instance used in RegisteredCreator().

	
conflict_policy = 'allow'

	

	
entries()

	Return an iterator over all registered entries.

	
classmethod get_conflict_policy()

	Obtain conflict policy from django settings or use default.

Allowed settings are ‘raise’ and ‘allow’. Default is ‘raise’.

	
lookup(name)

	I like to know if an entry is in the register, don’t you?
:param name: name to check.
:returns: True if entry with given name is in the register, False otherwise.

	
register(name, ref)

	Register an entry, shall we?
:param name: entry name.
:param ref: entry value (probably class).
:returns: True if model was added just now, False if it was already in the register.

	
class rest_easy.patterns.RegisteredCreator

	Bases: type [https://docs.python.org/3/library/functions.html#type]

This metaclass integrates classes with a BaseRegister subclass.

It skips processing base/abstract classes, which have __abstract__ property
evaluating to True.

	
static get_fields_from_base(base)

	Obtains all fields from the base class.
:param base: base class.
:return: generator of (name, value) tuples.

	
classmethod get_missing_fields(required_fields, fields)

	Lists required fields that are missing.

Supports two formats of input of required fields: either a simple set {‘a’, ‘b’} or a dict with several
options:

{
 'nested': {
 'presence_check_only': None,
 'functional_check': lambda value: isinstance(value, Model)
 },
 'flat_presence_check': None,
 'flat_functional_check': lambda value: isinstance(value, Model)
}

Functional checks need to return true for field not to be marked as missing.
Dict-format also supports both dict and attribute based accesses for fields (fields[‘a’] and fields.a).

	Parameters

	
	required_fields – set or dict of required fields.

	fields – dict or object of actual fields.

	Returns

	List of missing fields.

	
static get_name(name, bases, attrs)

	Get name to be used for class registration.

	
inherit_fields = False

	

	
classmethod post_register(cls, name, bases, attrs)

	Post-register hook.
:param cls: created class.
:param name: class name.
:param bases: class bases.
:param attrs: class attributes.
:return: None.

	
classmethod pre_register(name, bases, attrs)

	Pre-register hook.
:param name: class name.
:param bases: class bases.
:param attrs: class attributes.
:return: Modified tuple (name, bases, attrs)

	
classmethod process_required_field(missing, fields, name, value)

	Processes a single required field to check if it applies to constraints.

	
register = None

	

	
required_fields = set([])

	

Registers

This module contains the serializer register.

The serializer register is where all serializers created using
rest_easy.serializers.SerializerCreator are registered and where they can be obtained from based
on model and schema. Remember that no other serializers will be kept here - and they will not be obtainable in such
a way.

	
class rest_easy.registers.SerializerRegister(**kwargs)

	Bases: rest_easy.patterns.BaseRegister

Obtains serializer registration name based on model and schema.

	
get(model, schema)

	Shortcut to get serializer having model and schema.

	
static get_name(model, schema)

	Constructs serializer registration name using model’s app label, model name and schema.
:param model: a Django model, a ct-like app-model string (app_label.modelname) or explicit None.
:param schema: schema to be used.
:return: constructed serializer registration name.

Scopes

This module provides scopes usable with django-rest-easy’s generic views.

See rest_easy.views for detailed explanation.

	
class rest_easy.scopes.ScopeQuerySet(qs_or_obj, parent_field=u'pk', related_field=None, raise_404=False, allow_none=False, get_object_handle=u'', parent=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This class provides a scope-by-parent-element functionality to views and their querysets.

It works by selecting a proper parent model instance and filtering view’s queryset with it automatically.

	
child_queryset(queryset, view)

	Performs filtering of the view queryset.
:param queryset: view queryset instance.
:param view: view object.
:return: filtered queryset.

	
contribute_to_class(view)

	Put self.get_object_handle into view’s available handles dict to allow easy access to the scope’s get_object()
method in case the object needs to be reused (ie. in child object creation).
:param view: View the scope is added to.

	
get_object(view)

	Caching wrapper around _get_object.
:param view: DRF view instance.
:return: object (instance of init’s qs_or_obj model except shadowed by subclass).

	
get_queryset(view)

	Obtains parent queryset (init’s qs_or_obj) along with any chaining (init’s parent) required.
:param view: DRF view instance.
:return: queryset instance.

	
get_value(view)

	Get value used to filter qs_or_objs’s field specified for filtering (parent_field in init).
:param view: DRF view instance - as it provides access to both request and kwargs.
:return: value to filter by.

	
class rest_easy.scopes.UrlKwargScopeQuerySet(*args, **kwargs)

	Bases: rest_easy.scopes.ScopeQuerySet

ScopeQuerySet that obtains parent object from url kwargs.

	
get_value(view)

	Obtains value from url kwargs.
:param view: DRF view instance.
:return: Value determining parent object.

	
class rest_easy.scopes.RequestAttrScopeQuerySet(*args, **kwargs)

	Bases: rest_easy.scopes.ScopeQuerySet

ScopeQuerySet that obtains parent object from view’s request property.

It can work two-fold:

	the request’s property contains full object: in this case no filtering of parent’s queryset is required. When
using such approach, is_object must be set to True, and qs_or_obj can be None. Chaining will be disabled since it
is inherent to filtering process.

	the request’s property contains object’s id, uuid, or other unique property. In that case is_object needs to be
explicitly set to False, and qs_or_obj needs to be a Django model or queryset. Chaining will be performed as
usually.

	
get_value(view)

	Obtains value from url kwargs.
:param view: DRF view instance.
:return: Value determining parent object.

Serializers

This module contains base serializers to be used with django-rest-easy.

Crucial point of creating a good API is format consistency. If you’ve been lacking that so far, can’t afford it anymore
or want to make your life easier, you can enforce a common message format and a common serialization format.
Enter the following SerializerCreator - it will make sure that everything serializers output will contain schema
and model fields. This affects both regular and model serializers.

Additional benefit of using such metaclass is serializer registration - we can easily obtain serializers based on
model (or None for non-model serializers) and schema from anywhere in the application. That’s useful in several cases:

	model serialization

	remote data deserialization (no changes to (de)serialization logic required when we add a new schema)

	simpler views and viewsets

This doesn’t disable any DRF’s serializers functionality.

	
class rest_easy.serializers.ModelSerializer(instance=None, data=<class rest_framework.fields.empty>, **kwargs)

	Bases: rest_framework.serializers.ModelSerializer

Registered version of DRF’s ModelSerializer.

	
class rest_easy.serializers.Serializer(instance=None, data=<class rest_framework.fields.empty>, **kwargs)

	Bases: rest_framework.serializers.Serializer

Registered version of DRF’s Serializer.

	
class rest_easy.serializers.RegisterableSerializerMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A mixin to be used if you want to inherit functionality from non-standard DRF serializer.

	
class rest_easy.serializers.SerializerCreator

	Bases: rest_easy.patterns.RegisteredCreator, rest_framework.serializers.SerializerMetaclass

This metaclass creates serializer classes to be used with django-rest-easy.

We need to employ multiple inheritance here (if the behaviour ever needs to be overridden, you can just use both
base classes to implement your own functionality) to preserve DRF’s behaviour regarding
serializer fields as well as registration and required fields checking from our own metaclass.

Remember that all __new__ methods from base classes get called.

	
static get_fields_from_base(base)

	Alteration of original fields inheritance.

It skips all serializer fields, since SerializerMetaclass deals with that already.
:param base: a base class.
:return: generator of (name, value) tuples of fields from base.

	
static get_name(name, bases, attrs)

	Alteration of original get_name.

This, instead of returing class’s name, obtains correct serializer registration name from
rest_easy.registers.SerializerRegister and uses it as slug for registration purposes.
:param name: class name.
:param bases: class bases.
:param attrs: class attributes.
:return: registered serializer name.

	
inherit_fields = False

	

	
classmethod pre_register(name, bases, attrs)

	Pre-register hook adding required fields

This is the place to add required fields if they haven’t been declared explicitly.
We’re adding model and schema fields here.
:param name: class name.
:param bases: class bases.
:param attrs: class attributes.
:return: tuple of altered name, bases, attrs.

	
register = <rest_easy.registers.SerializerRegister object>

	

	
required_fields = {u'Meta': {u'model': <function <lambda>>, u'schema': <function <lambda>>}}

	

Views

This module provides redefined DRF’s generic views and viewsets leveraging serializer registration.

One of the main issues with creating traditional DRF APIs is a lot of bloat (and we’re writing Python, not Java or C#,
to avoid bloat) that’s completely unnecessary in a structured Django project. Therefore, this module aims to provide
a better and simpler way to write simple API endpoints - without limiting the ability to create more complex views.
The particular means to that end are:

	rest_easy.scopes.ScopeQuerySet and its subclasses (rest_easy.scopes.UrlKwargScopeQuerySet and
rest_easy.scopes.RequestAttrScopeQuerySet) provide a simple way to scope views and viewsets.
by resource (ie. limiting results to single account, or /resource/<resource_pk>/inner_resource/<inner_resource_pk>/)

	generic views leveraging the above, as well as model-and-schema specification instead of queryset, serializer and
helper methods - all generic views that were available in DRF as well as GenericAPIView are redefined to support
this.

	Generic rest_easy.views.ModelViewSet which allows for very simple definition of resource
endpoint.

To make the new views work, all that’s required is a serializer:

from users.models import User
from accounts.models import Account
from rest_easy.serializers import ModelSerializer
class UserSerializer(ModelSerializer):
 class Meta:
 model = User
 fields = '__all__'
 schema = 'default'

class UserViewSet(ModelViewSet):
 model = User
 scope = UrlKwargScopeQuerySet(Account)

and in urls.py:

from django.conf.urls import url, include
from rest_framework.routers import DefaultRouter
router = DefaultRouter()
router.register(r'accounts/(?P<account_pk>[0-9]+)/users', UserViewSet)
urlpatterns = [url(r'^', include(router.urls))]

The above will provide the users scoped by account primary key as resources: with list, retrieve, create, update and
partial update methods, as well as standard HEAD and OPTIONS autogenerated responses.

You can easily add custom paths to viewsets when needed - it’s described in DRF documentation.

	
class rest_easy.views.GenericAPIView(**kwargs)

	Bases: rest_easy.views.GenericAPIViewBase

Base view with compat metaclass.

	
rest_easy_available_object_handles = {}

	

	
class rest_easy.views.CreateAPIView(**kwargs)

	Bases: rest_easy.views.ChainingCreateUpdateMixin, rest_framework.mixins.CreateModelMixin, rest_easy.views.GenericAPIView

Concrete view for retrieving or deleting a model instance.

	
post(request, *args, **kwargs)

	Shortcut method.

	
rest_easy_available_object_handles = {}

	

	
class rest_easy.views.ListAPIView(**kwargs)

	Bases: rest_framework.mixins.ListModelMixin, rest_easy.views.GenericAPIView

Concrete view for listing a queryset.

	
get(request, *args, **kwargs)

	Shortcut method.

	
rest_easy_available_object_handles = {}

	

	
class rest_easy.views.RetrieveAPIView(**kwargs)

	Bases: rest_framework.mixins.RetrieveModelMixin, rest_easy.views.GenericAPIView

Concrete view for retrieving a model instance.

	
get(request, *args, **kwargs)

	Shortcut method.

	
rest_easy_available_object_handles = {}

	

	
class rest_easy.views.DestroyAPIView(**kwargs)

	Bases: rest_framework.mixins.DestroyModelMixin, rest_easy.views.GenericAPIView

Concrete view for deleting a model instance.

	
delete(request, *args, **kwargs)

	Shortcut method.

	
rest_easy_available_object_handles = {}

	

	
class rest_easy.views.UpdateAPIView(**kwargs)

	Bases: rest_easy.views.ChainingCreateUpdateMixin, rest_framework.mixins.UpdateModelMixin, rest_easy.views.GenericAPIView

Concrete view for updating a model instance.

	
patch(request, *args, **kwargs)

	Shortcut method.

	
put(request, *args, **kwargs)

	Shortcut method.

	
rest_easy_available_object_handles = {}

	

	
class rest_easy.views.ListCreateAPIView(**kwargs)

	Bases: rest_easy.views.ChainingCreateUpdateMixin, rest_framework.mixins.ListModelMixin, rest_framework.mixins.CreateModelMixin, rest_easy.views.GenericAPIView

Concrete view for listing a queryset or creating a model instance.

	
get(request, *args, **kwargs)

	Shortcut method.

	
post(request, *args, **kwargs)

	Shortcut method.

	
rest_easy_available_object_handles = {}

	

	
class rest_easy.views.RetrieveUpdateAPIView(**kwargs)

	Bases: rest_easy.views.ChainingCreateUpdateMixin, rest_framework.mixins.RetrieveModelMixin, rest_framework.mixins.UpdateModelMixin, rest_easy.views.GenericAPIView

Concrete view for retrieving, updating a model instance.

	
get(request, *args, **kwargs)

	Shortcut method.

	
patch(request, *args, **kwargs)

	Shortcut method.

	
put(request, *args, **kwargs)

	Shortcut method.

	
rest_easy_available_object_handles = {}

	

	
class rest_easy.views.RetrieveDestroyAPIView(**kwargs)

	Bases: rest_framework.mixins.RetrieveModelMixin, rest_framework.mixins.DestroyModelMixin, rest_easy.views.GenericAPIView

Concrete view for retrieving or deleting a model instance.

	
delete(request, *args, **kwargs)

	Shortcut method.

	
get(request, *args, **kwargs)

	Shortcut method.

	
rest_easy_available_object_handles = {}

	

	
class rest_easy.views.RetrieveUpdateDestroyAPIView(**kwargs)

	Bases: rest_easy.views.ChainingCreateUpdateMixin, rest_framework.mixins.RetrieveModelMixin, rest_framework.mixins.UpdateModelMixin, rest_framework.mixins.DestroyModelMixin, rest_easy.views.GenericAPIView

Concrete view for retrieving, updating or deleting a model instance.

	
delete(request, *args, **kwargs)

	Shortcut method.

	
get(request, *args, **kwargs)

	Shortcut method.

	
patch(request, *args, **kwargs)

	Shortcut method.

	
put(request, *args, **kwargs)

	Shortcut method.

	
rest_easy_available_object_handles = {}

	

	
class rest_easy.views.ReadOnlyModelViewSet(**kwargs)

	Bases: rest_framework.mixins.RetrieveModelMixin, rest_framework.mixins.ListModelMixin, rest_easy.views.GenericViewSet

A viewset that provides default list() and retrieve() actions.

	
rest_easy_available_object_handles = {}

	

	
class rest_easy.views.ModelViewSet(**kwargs)

	Bases: rest_easy.views.ChainingCreateUpdateMixin, rest_framework.mixins.CreateModelMixin, rest_framework.mixins.RetrieveModelMixin, rest_framework.mixins.UpdateModelMixin, rest_framework.mixins.DestroyModelMixin, rest_framework.mixins.ListModelMixin, rest_easy.views.GenericViewSet

A viewset that provides default create(), retrieve(), update(), partial_update(), destroy() and list() actions.

	
rest_easy_available_object_handles = {}

	

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 rest_easy	

 	
 	
 rest_easy.exceptions	

 	
 	
 rest_easy.fields	

 	
 	
 rest_easy.models	

 	
 	
 rest_easy.patterns	

 	
 	
 rest_easy.registers	

 	
 	
 rest_easy.scopes	

 	
 	
 rest_easy.serializers	

 	
 	
 rest_easy.views	

Index

 A
 | B
 | C
 | D
 | E
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U

A

 	
 	ApiConfig (class in rest_easy)

 	
 	autodiscover() (rest_easy.ApiConfig method)

B

 	
 	BaseRegister (class in rest_easy.patterns)

C

 	
 	child_queryset() (rest_easy.scopes.ScopeQuerySet method)

 	conflict_policy (rest_easy.patterns.BaseRegister attribute)

 	
 	contribute_to_class() (rest_easy.scopes.ScopeQuerySet method)

 	CreateAPIView (class in rest_easy.views)

D

 	
 	default_paths (rest_easy.ApiConfig attribute)

 	default_schema (rest_easy.models.SerializableMixin attribute)

 	delete() (rest_easy.views.DestroyAPIView method)

 	(rest_easy.views.RetrieveDestroyAPIView method)

 	(rest_easy.views.RetrieveUpdateDestroyAPIView method)

 	
 	deserialize_data() (in module rest_easy.models)

 	DestroyAPIView (class in rest_easy.views)

E

 	
 	entries() (rest_easy.patterns.BaseRegister method)

G

 	
 	GenericAPIView (class in rest_easy.views)

 	get() (rest_easy.registers.SerializerRegister method)

 	(rest_easy.views.ListAPIView method)

 	(rest_easy.views.ListCreateAPIView method)

 	(rest_easy.views.RetrieveAPIView method)

 	(rest_easy.views.RetrieveDestroyAPIView method)

 	(rest_easy.views.RetrieveUpdateAPIView method)

 	(rest_easy.views.RetrieveUpdateDestroyAPIView method)

 	get_conflict_policy() (rest_easy.patterns.BaseRegister class method)

 	get_fields_from_base() (rest_easy.patterns.RegisteredCreator static method)

 	(rest_easy.serializers.SerializerCreator static method)

 	
 	get_missing_fields() (rest_easy.patterns.RegisteredCreator class method)

 	get_name() (rest_easy.patterns.RegisteredCreator static method)

 	(rest_easy.registers.SerializerRegister static method)

 	(rest_easy.serializers.SerializerCreator static method)

 	get_object() (rest_easy.scopes.ScopeQuerySet method)

 	get_queryset() (rest_easy.scopes.ScopeQuerySet method)

 	get_serializer() (in module rest_easy.models)

 	(rest_easy.models.SerializableMixin class method)

 	get_value() (rest_easy.scopes.RequestAttrScopeQuerySet method)

 	(rest_easy.scopes.ScopeQuerySet method)

 	(rest_easy.scopes.UrlKwargScopeQuerySet method)

I

 	
 	inherit_fields (rest_easy.patterns.RegisteredCreator attribute)

 	(rest_easy.serializers.SerializerCreator attribute)

L

 	
 	label (rest_easy.ApiConfig attribute)

 	ListAPIView (class in rest_easy.views)

 	
 	ListCreateAPIView (class in rest_easy.views)

 	lookup() (rest_easy.patterns.BaseRegister method)

M

 	
 	ModelSerializer (class in rest_easy.serializers)

 	
 	ModelViewSet (class in rest_easy.views)

N

 	
 	name (rest_easy.ApiConfig attribute)

P

 	
 	patch() (rest_easy.views.RetrieveUpdateAPIView method)

 	(rest_easy.views.RetrieveUpdateDestroyAPIView method)

 	(rest_easy.views.UpdateAPIView method)

 	paths (rest_easy.ApiConfig attribute)

 	post() (rest_easy.views.CreateAPIView method)

 	(rest_easy.views.ListCreateAPIView method)

 	
 	post_register() (rest_easy.patterns.RegisteredCreator class method)

 	pre_register() (rest_easy.patterns.RegisteredCreator class method)

 	(rest_easy.serializers.SerializerCreator class method)

 	process_required_field() (rest_easy.patterns.RegisteredCreator class method)

 	put() (rest_easy.views.RetrieveUpdateAPIView method)

 	(rest_easy.views.RetrieveUpdateDestroyAPIView method)

 	(rest_easy.views.UpdateAPIView method)

R

 	
 	ReadOnlyModelViewSet (class in rest_easy.views)

 	ready() (rest_easy.ApiConfig method)

 	register (rest_easy.patterns.RegisteredCreator attribute)

 	(rest_easy.serializers.SerializerCreator attribute)

 	register() (rest_easy.patterns.BaseRegister method)

 	RegisterableSerializerMixin (class in rest_easy.serializers)

 	RegisteredCreator (class in rest_easy.patterns)

 	RequestAttrScopeQuerySet (class in rest_easy.scopes)

 	required_fields (rest_easy.patterns.RegisteredCreator attribute)

 	(rest_easy.serializers.SerializerCreator attribute)

 	rest_easy (module)

 	rest_easy.exceptions (module)

 	rest_easy.fields (module)

 	rest_easy.models (module)

 	rest_easy.patterns (module)

 	rest_easy.registers (module)

 	rest_easy.scopes (module)

 	rest_easy.serializers (module)

 	
 	rest_easy.views (module)

 	rest_easy_available_object_handles (rest_easy.views.CreateAPIView attribute)

 	(rest_easy.views.DestroyAPIView attribute)

 	(rest_easy.views.GenericAPIView attribute)

 	(rest_easy.views.ListAPIView attribute)

 	(rest_easy.views.ListCreateAPIView attribute)

 	(rest_easy.views.ModelViewSet attribute)

 	(rest_easy.views.ReadOnlyModelViewSet attribute)

 	(rest_easy.views.RetrieveAPIView attribute)

 	(rest_easy.views.RetrieveDestroyAPIView attribute)

 	(rest_easy.views.RetrieveUpdateAPIView attribute)

 	(rest_easy.views.RetrieveUpdateDestroyAPIView attribute)

 	(rest_easy.views.UpdateAPIView attribute)

 	RestEasyException

 	RetrieveAPIView (class in rest_easy.views)

 	RetrieveDestroyAPIView (class in rest_easy.views)

 	RetrieveUpdateAPIView (class in rest_easy.views)

 	RetrieveUpdateDestroyAPIView (class in rest_easy.views)

S

 	
 	ScopeQuerySet (class in rest_easy.scopes)

 	SerializableMixin (class in rest_easy.models)

 	serialize() (rest_easy.models.SerializableMixin method)

 	Serializer (class in rest_easy.serializers)

 	SerializerCreator (class in rest_easy.serializers)

 	
 	SerializerRegister (class in rest_easy.registers)

 	Singleton (class in rest_easy.patterns)

 	singleton_decorator() (rest_easy.patterns.SingletonCreator static method)

 	SingletonBase (class in rest_easy.patterns)

 	SingletonCreator (class in rest_easy.patterns)

 	StaticField (class in rest_easy.fields)

T

 	
 	to_representation() (rest_easy.fields.StaticField method)

U

 	
 	UpdateAPIView (class in rest_easy.views)

 	
 	UrlKwargScopeQuerySet (class in rest_easy.scopes)

Introduction

Django-rest-easy is an extension to Django Rest Framework providing QOL improvements to serializers and views that introduce a more
coherent workflow for creating REST APIs:

	Versioning and referencing serializers by model and schema, along with autoimport, so your serializers will be available anywhere,
as long as you know the model and schema.

	A rest_easy.fields.StaticField for adding static data (independent of instance) to serializers.

	Creating views and viewsets using model and schema (it will automatically obtain serializer and queryset, although you can override
both with usual DRF class-level parameters).

	A serializer override for a particular DRF verb, like create or update: no manual get_serialize_class override, no splitting ViewSets
into multiple views.

	Scoping views’ querysets and viewsets by url kwargs or request object parameters. Fore example, when you want to limit messages to
a particular thread or threads to currently logged in user.

	Adding your own base classes to GenericView and your own mixins to all resulting generic view classes, like ListCreateAPIView.

	Chaining views’ perform_update and perform_create: they by default pass **kwargs to serializer.save() now.

	A helper mixin that enables serializing Django model instances with just an instance method call.

	A helper methods that find serializer class and deserialize a blob of data, since oftentimes you will not know what exact data you will
receive in a particular endpoint, especially when dealing with complex integrations.

All of the above are possible in pure DRF, but usually introduce a lot of boilerplate or aren’t very easy or straightforward to code
Therefore, at Telmediq we decided to open source the package that helps make our API code cleaner and more concise.

Installation

Django-rest-easy is available on PyPI. The simplest way to install it is by running pip install django-rest-easy. Afterwards you need
to add rest_easy to Django’s INSTALLED_APPS:

INSTALLED_APPS = (
 # ...
 'rest_framework',
 'rest_easy',
 # ...
)

To make your serializers registered and working well with django-rest-easy’s views, make sure they are autoimported. You can do that
either by importing them in app.serializers module or modifying REST_EASY_AUTOIMPORT_SERIALIZERS_FROM setting to include your
serializer location. For example, if you place your serializers in app.api.serializers, you should add the following to your settings
file:

REST_EASY_AUTOIMPORT_SERIALIZERS_FROM = ['api.serializers']

Also, change your serializers to inherit from rest_easy.serializers.Serializer or rest_easy.serializers.ModelSerializer
instead of default DRF serializers. Same goes for views - you should be using this:

from rest_easy.views import *

Instead of

from rest_framework.generics import *

Additionally, the following settings can alter the behaviour of the package:

	REST_EASY_AUTOIMPORT_SERIALIZERS_FROM - specify modules or packages that rest-easy will try to import serializers
from when AppConfig is ready. The import is app-based, so it will search for serializers in all installed apps.
By default [‘serializers’]

	REST_EASY_VIEW_BASES - the mixins that should go into all views near the end of the mro (method resolution order). They
will be placed before all DRF and django-rest-easy’s bases, and after all generic mixins from DRF.

	REST_EASY_GENERIC_VIEW_MIXINS - the mixins that should go into all generic views at the beginning of the mro
(that means CreateAPIView, ListAPIView, RetrieveAPIView, DestroyAPIView, UpdateAPIView, ListCreateAPIView,
RetrieveUpdateAPIView, RetrieveDestroyAPIView, RetrieveUpdateDestroyAPIView, ReadOnlyModelViewSet,
ModelViewSet).

	REST_EASY_SERIALIZER_CONFLICT_POLICY - either ‘allow’ or ‘raise’. What should happen when you redeclare a serializer
with same model and schema - either the new one will be used or an error will be raised. By default ‘allow’ to not
break applications with weird imports.

Because you usually won’t be able to import the bases directly in settings, they should be given using class location strings (as is
often the case in Django):

REST_EASY_VIEW_BASES = ['myapp.mixins.GlobalBase']
REST_EASY_GENERIC_VIEW_MIXINS = ['myapp.mixins.SuperMixin', 'myotherapp.mixins.WhatIsItMixin']

They will be prepended to base class lists preserving their order. Please make sure that you are not importing django-rest-easy views
before the mixins are ready to import (so before AppConfig.ready is called, for good measure).

Basic usage

A minimal example to showcase what you can do would be:

from django.conf.urls import include, url
from rest_framework.routers import DefaultRouter

from rest_easy.serializers import ModelSerializer
from rest_easy.views import ModelViewSet
from rest_easy.scopes import UrlKwargScopeQuerySet
from rest_easy.tests.models import Account, User

class UserSerializer(ModelSerializer):
 class Meta:
 model = User
 schema = 'default'
 fields = '__all__'

class UserViewSet(ModelViewSet):
 model = User
 schema = 'default'
 lookup_url_kwarg = 'pk'
 scope = UrlKwargScopeQuerySet(Account)

router = DefaultRouter()
router.register(r'accounts/(?P<account_pk>\d+)/users', UserViewSet)

urlpatterns = [url(r'^', include(router.urls))]

Detailed usage

Serializers

Django-rest-easy serializer bases (rest_easy.serializers.Serializer and rest_easy.serializers.ModelSerializer) are
registered on creation and provide some consistency constraints: each serializer needs to have model and schema set in its Meta. Schema
needs to be a string, while model should be a Django model subclass or explicit None. Both of those properties are required to be able
to register the serializer properly. Both are also appended to serializer’s fields as rest_easy.fields.StaticField. They will
be auto-included in Meta.fields when necessary (ie. fields is not __all__):

class UserSerializer(ModelSerializer):
 class Meta:
 model = User
 schema = 'default'
 fields = '__all__'

Serializers can be obtained easily from rest_easy.registers.SerializerRegister (or, already instantiated,
rest_easy.registers.serializer_register) like so:

from rest_easy.registers import serializer_register

serializer = serializer_register.get('myapp.mymodel', 'default-schema')
or
from myapp.models import MyModel
serializer = serializer_register.get(MyModel, 'default-schema')
or
serializer = serializer_register.get(None, 'modelless-schema')

This feature is leveraged heavily by django-rest-easy’s views. Please remember that serializers need to be imported in order to be
registered - it’s best achieved by using the auto-import functionality described in the installation section.

As for the rest_easy.fields.StaticField, it can be used as such:

class UserSerializer(ModelSerializer):
 class Meta:
 model = User
 schema = 'default'
 fields = '__all__'
 static_data = StaticField(value='static_value')

Views

Views and viewsets provide a few additional features, allowing you to not specify queryset and serializer_class properties by
default. If they are specified, though, they take priority over any logic provided by django-rest-easy.

	Providing serializer_class will disable per-verb custom serializers. It will make the view act basically as regular DRF view.

	queryset property doesn’t disable any functionality. By default it is set to model.objects.all(), where model is provided as a
class property, but it can be overridden at will without messing with django-rest-easy’s functionality.

Overall using serializer_class on django-rest-easy views is not recommended.

A view example showing available features:

class UserViewSet(ModelViewSet):
 model = User
 schema = 'default'
 serializer_schema_for_verb = {'update': 'schema-mutate', 'create': 'schema-mutate'}
 lookup_url_kwarg = 'pk'
 scope = UrlKwargScopeQuerySet(Account)

 def perform_update(self, serializer, **kwargs):
 kwargs['account'] = self.get_account()
 return super(UserViewSet, self).perform_update(serializer, **kwargs)

 def perform_create(self, serializer, **kwargs):
 kwargs['account'] = self.get_account()
 return super(UserViewSet, self).perform_create(serializer, **kwargs)

We’re setting User as model, so the inferred queryest will be User.objects.all(). When a request comes in, a proper serializer will
be selected:

	If the DRF dispatcher will call update or create methods, we will use serializer obtained by calling
serializer_register.get(User, ‘schema-mutate’).

	Otherwise the default schema will be used, so serializer_register.get(User, ‘default’).

Additionally we’re scoping the Users by account. In short, that means (by default - more on that in the section below) that our base
queryset is modified with:

queryset = queryset.filter(account=Account.objects.get(pk=self.kwargs.get('account_pk')))

Also, helper methods are provided for each scope that doesn’t disable it:

def get_account(self):
 return Account.objects.get(pk=self.kwargs.get('account_pk'))

Technically, they are implemented with __getattr__, but each scope which doesn’t have get_object_handle set to None
will provide a get_X method (like get_account above) to obtain the object used for filtering. The object is kept cached
on the view instance, so it can be reused during request handling without additional database queries. If the get_X method
would be shadowed by something else, all scoped object are available via view.get_scoped_object:

def perform_create(self, serializer, **kwargs):
 kwargs['account'] = self.get_scoped_object('account')
 return super(UserViewSet, self).perform_create(serializer, **kwargs)

This follows standard Django convention of naming foreign keys by RelatedModel._meta.model_name (same as scoped object access
on view), using pk as primary key and modelname_pk as url kwarg. All of those parameters are configurable (see Scopes section below).

For more complex cases, you can provide a list of scopes instead of a single scope. All of them will be applied to the queryset.

Now let’s say all your models need to remember who modified them recently. You don’t really want to pass the logged in user to
serializer in each view, and using threadlocals or globals isn’t a good idea for this type of task. The solution to this problem
would be a common view mixin. Let’s say we place this in myapp.mixins.py:

class InjectUserMixin(object):
 def perform_update(self, serializer, **kwargs):
 kwargs['user'] = self.request.user
 return super(UserViewSet, self).perform_update(serializer, **kwargs)

 def perform_create(self, serializer, **kwargs):
 kwargs['user'] = self.request.user
 return super(UserViewSet, self).perform_create(serializer, **kwargs)

And set REST_EASY_GENERIC_VIEW_MIXINS in your Django settings to:

REST_EASY_GENERIC_VIEW_MIXINS = ['myapp.mixins.InjectUserMixin']

Now all serializers will receive user as a parameter when calling save() from a update or create view.

Scopes

Scopes are used to apply additional filters to views’ querysets based on data obtainable form kwargs
(rest_easy.scopes.UrlKwargScopeQuerySet) and request (rest_easy.scopes.RequestAttrScopeQuerySet). They should be used
remove the boilerplate and bloat coming from filtering inside get_queryset or in dedicated mixins by providing a configurable wrapper
for the filtering logic.

There is also a base rest_easy.scopes.ScopeQuerySet that you can inherit from to provide your own logic. When called, the
ScopeQuerySet instance receives whole view object as a parameter, so it has access to everything that happens during the request as well
as in application as a whole.

Scopes can be chained (that is you can filter scope’s queryset using another scope, just as it was a view; this supports lists of scopes
as well). An example would be:

class MessageViewSet(ModelViewSet):
 model = Message
 schema = 'default'
 lookup_url_kwarg = 'pk'
 scope = UrlKwargScopeQuerySet(Thread, parent=UrlKwargScopeQuerySet(Account))

ScopeQuerySet

When instantiating it, it accepts the following parameters ({value} is the filtering value obtained by concrete Scope implementation):

	qs_or_obj: a queryset or model (in that case, the queryset would be model.objects.all()) that the scope works on. This can also
be None in special cases (for example, when using rest_easy.scopes.RequestAttrScopeQuerySet with is_object=True).
For example, assuming you have a model Message that has foreign key to Thread, when scoping a MessageViewSet you would use
scope = ScopeQuerySet(Thread).

	parent_field: the field qs_or_obj should be filtered by. By default it is pk. Following the example, the scope above would find the
Thread object by Thread.objects.all().filter(pk={value}).

	raise_404: If the instance we’re scoping by isn’t found (in the example, Thread with pk={value}), whether a 404 exception should be
raised or should we continue as usual. By default False

	allow_none: If the instance we’re scoping by isn’t found and 404 is not raised, whether to allow filtering child queryset with None
(allow_none=True) or not - in this case we will filter with model.objects.none() and guarantee no results (allow_none=False).
False by default.

	get_object_handle: the name under which the object used for filtering (either None or result of applying {value} filter to queryset)
will be available on the view. By default this is inferred to model_name. Can be set to None to disable access. It can be accessed
from view as view.get_{get_object_handle}, so when using the above example, view.get_thread(). If the get_x method would be
shadowed by something else, there is an option to call view.get_scoped_object(get_object_handle), so for example
view.get_scoped_object(thread).

	parent: parent scope. If present, qs_or_obj will be filtered by the scope or scopes passed as this parameter, just as if this was a
view.

UrlKwargScopeQuerySet

It obtains filtering value from view.kwargs. It takes one additional keyword argument:

	url_kwarg: what is the name of kwarg (as given in url config) which has the value to filter by. By default it is configured to be
model_name_pk (model name is obtained from qs_or_obj).

Example:

scope = UrlKwargScopeQuerySet(Message.objects.active(), parent_field='uuid', url_kwarg='message_uuid', raise_404=True)
queryset = scope.child_queryset(queryset, view)
is equal to roughly:
queryset = queryset.filter(message=Message.objects.active().get(uuid=view.kwargs.get('message_uuid'))

RequestAttrScopeQuerySet

It obtains the filtering value from view.request. It takes two additional keyword arguments:

	request_attr: the attribute in view.request that contains the filtering value or the object itself.

	is_object: whether the request attribute contains object (True) or filtering value (False). By default True.

Example with is_object=True:

scope = RequestAttrScopeQuerySet(User, request_attr='user')
queryset = scope.child_queryset(queryset, view)
is roughly equal to:
queryset = queryset.filter(user=view.request.user)

Example with is_object=False:

scope = RequestAttrScopeQuerySet(User, request_attr='user', is_object=False)
queryset = scope.child_queryset(queryset, view)
is roughly equal to:
queryset = queryset.filter(user=User.objects.get(pk=view.request.user))

Helpers

There are following helpers available in rest_easy.models:

	rest_easy.models.SerializableMixin - it’s supposed to be used on models. It provides
rest_easy.models.SerializableMixin.get_serializer() method for obtaining model serializer given a schema and
rest_easy.models.SerializableMixin.serialize() to serialize data (given schema or None, in which case the default schema is
used. It can be set on a model, initially it’s just ‘default’).

	rest_easy.models.get_serializer() - looking at a blob of data, it obtains the serializer from register based on data[‘model’]
and data[‘schema’].

	rest_easy.models.deserialize_data() - deserializes a blob of data if appropriate serializer is found.

 nav.xhtml

 Table of Contents

 		
 Django Rest Easy

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

